Some Global Uniqueness and Solvability Results for Linear Complementarity Problems Over Symmetric Cones
نویسندگان
چکیده
This article deals with linear complementarity problems over symmetric cones. Our objective here is to characterize global uniqueness and solvability properties for linear transformations that leave the symmetric cone invariant. Specifically, we show that, for algebra automorphisms on the Lorentz space Ln and for quadratic representations on any Euclidean Jordan algebra, global uniqueness, global solvability, and the R0-properties are equivalent. We also show that for Lyapunovlike transformations, the global uniqueness property is equivalent to the transformation being positive stable and positive semidefinite.
منابع مشابه
A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کاملGeneralized Linear Complementarityproblemsm
It has been shown by Lemke that if a matrix is copositive plus on IR n , then feasibility of the corresponding Linear Complementarity Problem implies solvability. In this article we show, under suitable conditions, that feasibility of a Generalized Linear Complementarity Problem (i.e., deened over a more general closed convex cone in a real Hilbert Space) implies solvability whenever the operat...
متن کاملInterior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones
We study the continuous trajectories for solving monotone nonlinear mixed complementarity problems over symmetric cones. While the analysis in [5] depends on the optimization theory of convex log-barrier functions, our approach is based on the paper of Monteiro and Pang [17], where a vast set of conclusions concerning continuous trajectories is shown for monotone complementarity problems over t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 18 شماره
صفحات -
تاریخ انتشار 2007